The Wigner distribution function for the one-dimensional parabose oscillator

نویسندگان

  • E. Jafarov
  • S. Lievens
چکیده

In the beginning of the 1950’s, Wigner introduced a fundamental deformation from the canonical quantum mechanical harmonic oscillator, which is nowadays sometimes called a Wigner quantum oscillator or a parabose oscillator. Also, in quantum mechanics the socalled Wigner distribution is considered to be the closest quantum analogue of the classical probability distribution over the phase space. In this article, we consider which definition for such distribution function could be used in the case of non-canonical quantum mechanics. We then explicitly compute two different expressions for this distribution function for the case of the parabose oscillator. Both expressions turn out to be multiple sums involving (generalized) Laguerre polynomials. Plots then show that the Wigner distribution function for the ground state of the parabose oscillator is similar in behaviour to the Wigner distribution function of the first excited state of the canonical quantum oscillator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Wigner distribution function for finite oscillator systems

We define a Wigner distribution function for a one-dimensional finite quantum system, in which the position and momentum operators have a finite (multiplicity-free) spectrum. The distribution function is thus defined on discrete phase-space, i.e. on a finite discrete square grid. These discrete Wigner functions possess a number of properties similar to the Wigner function for a continuous quant...

متن کامل

The Wigner distribution function for the su(2) finite oscillator and Dyck paths

Recently, a new definition for a Wigner distribution function for a one-dimensional finite quantum system, in which the position and momentum operators have a finite (multiplicityfree) spectrum, was developed. This distribution function is defined on discrete phase-space (a finite square grid), and can thus be referred to as the Wigner matrix. In the current paper, we compute this Wigner matrix...

متن کامل

Wigner Distribution Function and Entropy of the Damped Harmonic Oscillator within the Theory of Open Quantum Systems

The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the δ-function type of initial conditions. The obtained Wigner f...

متن کامل

Finite Dimensional Schwinger Basis, Deformed Symmetries, Wigner Function, and an Algebraic Approach to Quantum Phase

Schwinger’s finite (D) dimensional periodic Hilbert Space representations are studied on the toroidal lattice with specific emphasis on the deformed oscillator subalgebras and the generalized representations of the Wigner function. These subalgebras are shown to be admissible endowed with the non-negative norm of Hilbert space vectors. Hence, they provide the desired canonical basis for the alg...

متن کامل

ONE-DIMENSIONAL TREATMENT OF HYDROGEN BOND PART 2

The potential function of Lippincott and Schroeder for linear hydrogen bond has been re-examined and extended to nonlinear hydrogen bond. The parameters originally introduced to the potential function by Lippincott and Schroeder have been determined from the structural parameters such as 0.. .Odistance 0-H bond distance, H.. .O distance and HOO angle. Thevalidity of harmonic oscillator appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008